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Abstract

This paper explores the use of Joreskog's (i970) congeneric
modeling approach to reliability using censored quantitative
variables. Two Monte Carlo studies were conducted. The first
study explored the robustness of Normal theory Generalized Least-
squares estimates for a single factor congeneric model across a
variety of sample sizes (N=25, 50, 100, 400), model loading sizes
(large » = .9 and moderate A = .8), and different levels of
censoring (0%, 25%, 50% 75%). A second study compared alternatéz
estimation procedures for different levels of variable censoring
(0%, 25%, 50%, 75%) based on a single factor large loading
congeneric model with a sample size of N=100. Both normal theory
generalized least-squares (NTGLS) (Jéreskog & Goldberger, 1972;
Browne, 1974), asymptotically distribution free (ADF) (Browne,
1982), and latent TOBIT estimators (Muthén, 1985; 1987a; in
press) were compared as to their efficiency in estimating model
parameters.

Results from study one confirmed previous £indings that
convergence rate is inversely related to sample size, and to some
degree size of the model loadings. Censoring of variables
produced thke expected negative bias in estimates using NTGLS
methods with the magnitude of the bias somewhat robust against
sample size variation. Results from study fwo indicated that the
TORIT estimates were robust with respect to model rejection and
amount of parameter bias across various levels of variable
censoring. Both NTGLS and ADF methods proved to be unsatisfactory
both in model rejections and percent of bias.
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Introduction

Several procedures have been proposed for the estimation of
interrater reliability, many of which have been based on an
analysis of variance approach (Winer, 1962). Though these
procedures are used frequently they require acceptance of a
number of assumptions (Saal, Downey & Lahey, 1980). One major
assumption is that all the measures must have the same unit of
measurement, sometimes referred to as "tau equivalency”" (Lord &
Novick, 1968). In response to this assumption, a covariance
modeling procedure, based on Jéreskog's (1970) general model for
the analysis of covariance structures has been proposed (Herts,
Linn & Jéreskog, 1974; Van Der Kamp & Mellenbergh, 1976).

While the covariance modeling procedure provides details
about the assumptions surrounding the use of analysis of variance
based reliability measures, it is not without some limitation.
One wajor limitation is that the observed variables must be
multivariate normally distributed for the appropriate estimation
of parameters, if one is using the typical estimation procedures
(e.g., maximum likelihood, or normal theory generalized least
squares). This procedure would come under question if one
attempted to analyze censored variables (variables that have a
high concentration of cases at either end of the distribution).

This paper explores the use of Jéreskog's (1970) coageneric

modeling approach to reliability using censored quantitative
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variables. Two Monte Carlo studies were conducted. The €first
study explored the robustness of Normal theory Generalized Least-
squares (NTGLS) estimates for a single factor congeneric model
across various sample sizes (25, 50, 100, 400), model 1loadings
(large A = .9 and moderate ) = .8), and levels of variable
censoring (0%, 25%, 50% 75%). A second study compared alternate
estimation procedures for different levels of variable censoring
(0%, 25%, 50%, 75%) for the congeneric model, using NTGLS
(Joreskog & Goldberger, 1972; Browne, 1974), asymptotically
distribution free methods (ADF) (Browne, 1982), and latent TOBIT
estimators (Muthén, 1985; 1987a; in press). These methods were
then compared as to their efficiency in estimating model

parameters.

Congeneric Modeling Approach to Reliability

The congeneric approach, based on covariance modeling
(Jéreskog, 1970) considers a rater as a test instrument, with a
data matrizx X(m x k), denoting rater scores for a randomly
selected subject group (m), where m = t.e number of observations
(subjects) over (k) raters. Assuming the rows of X are
independently distributed, each having a multivariate normal

distribution, the .vugeneric model for a four-indicator

reliability model may be written as:




. ("(, R A Y - T ) ~
(RS TON ..i Bosormene” s s oty i e a4 b o grar

£ Bseigs 5. v one s 13

' '

- —~ = - -
r“:xl Al eel

x A o

2 = 2 N+ 2 = An+e, (1)
x A 6

3 3 €,
A . S

where (A) and (ee) are parameters to be estimated for each (k)
rater, with (1) representing the true component and (68) the
error component. Assuming uncorrelated measurement errors, with
variables that have a zero mean and a factor variance of 1.00,

the variance-covariance matrix for this model may be defined as:

o —
2
AS. + 6 A
1l 81
MA, 7\22 t 8
g = . 2 (2a)
2
A Ag Aphq A%, + 623 .
A A Ao A AL A A2+
1% 21 30 4 €

which may be rewritten as:

z

AA" + 68 (2p)
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where ee is an (k x k) diagonal matrix of error wvariarces, and A‘’
is a vector of loadings on a single common factor. Using this
model, one 1is able %to test the initial assumption that all
measures have the same underlying true score (N). For example, if
one considers a situation where four independent assessments of
patient symptoms are rated usirng a continuous symptom scale, one
would estimate the A loading matrix and the error variances ee.
For convenience, as previously mentioned, the variance of the
true score may be standardized (¢11 = 1.00). This approach will
provide two overidentifying restrictions in the model (two

degrees of freedom), allowing one to test the following position:

If this null hypothesis is not rejected, individual rater

reliability may be estimated as:

~2
2 " As
. Py = = (3)
‘, A2 A
Ai + ee

with composite reliability being estimated as:

(4)

PAruiToxt Provided by ERIC
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Subsets of the Congeneric Model

A major assumption in the use of intraclass correlation and
generalizability theory procedures (Cronbach, Rajaratnam &
Gleser, 1962) is that all measures have the same unit of
measurement, sometimes referred to as being "tau-equivalent"”
{Lord & Novick, 1968). If this assumption is not met, then the
averaging cf scores would not be meaningful, and the use oZ ANOVA
based procedures would not be appropriate. Joéreskog (1970)
provides a procedure based on a subsaf of the congeneric model to
test for tau-equivalence. This assumes that measures are
equivalent if the regression weights Ak are equal in A. In the

tau-equivalence model, one would test:

with (%k(k + 1)-(k + 1)) degrees of freedom. A total of (k + 1)
parameters would then be estimated. If the tau—equivalenéy
hypothesis is rejected, then ANOVA procedures should be rejected

for estimating reliability and/or generalizability procedures

{werts, Linn & Joreskog, 1974). If the hypothesis is not rejected
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the parameter estimates may be used to estimate individual

reliability:

~2
~ A
Pi = ~ - (5)
+ 8
€3
and composite reliability:
a 2
A (k A )
Pc = J— - (6)

(k A) + & ee

i

It should also be noted that the reliabilities estimated
from equation (5) may vary contingent upon differing error
variances (ee). The stability of error variances is assumed in
the ANOVA procedures, but may be tested using another subset of
the congeneric model, sometimes referred to as a "parallel model"
(Gulliksen, 1968; Jéreskog, 1970). This model implies equality

constraints on both the hi's and the e8 's, so one tests the
i

following:
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with (%k(k + 1) - 2) degrees of freedom. A total of two
parameters will be estimated in this specific model. If the
parallel hypothesis is rejected, Werts, et al. (1974) assert that
the use of ANOVA based procedures would have underestimated the
composite reliability. If the parallel hypothesis is not rejected

on may estimate the reliabilities as follows:

” A

P = (7)

k A2 A
A+ ee

and composite reliability:
~ 2

P = - " (8) i

(k A) + k ee
Tests of these hypotheses amount to tests of the validity of f: #

specific assumptions about the model, which are not provided in
the ANGVA based intraclass reliability estimates (Werts, Linn &
Joreskog, 1974).

While the Jéreskog (1970) procedure Seems attractive for
answering questions regarding measurement unit equivalency and

stability of error variances in reliability models, the procedure

has limitations of its own. (6
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Congeneric Model Limitations

The test of the aforementioned hypotheses are somewhat
contingent upon the type of parameter estimation procedure used
in constructing the measurement model. Typically, normal theory
maximum likelihood (NTML) or generalized least-squares (NTGLS)
estimation procedures have been recommended, simply because these
procedures allow the estimation of standard errors and provide a
test statistic (likelihood ratio L2) for assessing the hypotheses
(Jéreskog, 1970). The adequacy of using NTML or NTGLS estimation
crocedures for estimating such a reliability model must of coursez
be based on a number of conditions. First, sample size seems to
be a crucial factor. Monte Carlo studies based on normal theory
distribution sampling have indicated that the use of NTML and
NTGLS estimation procedures on sample sizes of less than 59
result in model convergence problems, while sample sizes of N=25
result in serious improper sclutions (Boomsma, 1982; 1983; 1985;
Anderson & Gerbing, 1984). Typically, minimum sample size
recommendations for unbiased estimates are usually set at N 2
100.

Secondly, distributions with aberrant skewness and kurtosis
values result in higher than usual model rejections (Boomsma,

1983) anéd poorer parameter estimates. It is with this second

limitation that this paper will concentrate.
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Censored Continuous Variables

One source of aberrant skewness and kurtosis values in sampie
variables has been the result of analyzing sample truncated
normal distribution variables. Hald (1949) has called such
variables "censored!" variables, since the population from which
the sazple variable was drawn is considered normally distributed,
and the sample being considered incomplete. More formally, a

continuous censored variable may be defined as:

Y = ¢ = if y* ¢ ¢,
y = y* ., if ¢y < y* < Cy
- =cC v if y* 2 ¢

’

u

where ¢, and Ca represent known lower and upper censoring
constants, which aiay take on values -« to +«. Censored variables
may thus be considered variables that have limited variability
with a large proportion of cases occuvrring at one or both end
point of the scale. Muthén (1985; 1987a) has shown that increases
in censoring have a substantial effect on the attenuation of the
population correlation estimates (Figure 1), which has an effect

cn model estimates.

Insert Figure 1 about here
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Censored variables are common place in the measurement of
extreme phenomena, such as in the case of measuring psychotic
symptomatology. A major question then becomes, how robust is the
ase of normal theory estimation procedures, specifically NTGLS,
for estimating congeneric reliability models with censored
variables? While studies have shown that normal theory methods
are fairly robust with regards to mild deviations (Boomsma, 1983;
Muthén & Kaplan, 1985) questions remain regarding the robustness

of NTGLS to moderate and sever deviations.

Monte Carlc Studies

Study Design 1:

Table 1 gives an'overview of the £first study's design. In
this study only NTGLS estimutes were used, and were obtained by
using the LISCOMP (Muthén, 1987b) computer program on an IBM-
4341 mainframe computer. A standardized population covariance
matrix () was created for the four variable single factor
congeneric model using equation (2b). Two separate single factor
model population covariance matrices were created. The first
matrix (based on a highly reliable model with large loadinés
(LLM)) was established using; Var(h) = 1.00 and /\1 =[.9, .9, .9,
-9]. The second ma%rix (based on a less reliable model using

moderate loadings (MLM)) was established using; Var(n) = 1.00 and

A2 = [.6, .6, .6, .6)]. Variances of the errors in measurement
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(uniqueness) were defined for both models as 6, =1 - Az. Using
equation (3), it may be shown that rater reliability for the
congeneric model may be reduced to 12. Table 2 provides
population values and corresponding standard errors. Each &
matrix was then used to generate 100 sample covariance (8S)

matrices for each sample size condition (N=25, 50, 100, 400).

Insert Table 1 about here

Insert Figure 2 about here

Insert Table 2 about here

Study Design 2:
Table 3 provides details about the design of the second

Monte Carlo study. In this study three different estimatién
procedures were considered. First, as previously discussed, NTGLS
was estimated over the conditions. Second, in an attempt to
reduce the possible inflation in L2 due to non-normality,

Browne's (1952) asymptotically distribution free (ADF)

14
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generalized least-squares estimator was considered. Finally,
Muthén's (1985; 1987a) latent TOBIT estimator for censored
variables was estimated to: (1) provide a better estimate of the
correlation, and (2) deal with non-normality. All estimates were
obtained on an IBM-4341 mainframe computer using the LISCOMP
(Muthén, 1987) program. At this point in the research, only one
sample size (N=100) and one single fa.tor congeneric model (A =
.9, with 6_ = 1 - 2%, and Var(®) = 1.00) was considered for the
comparison analysis (see table 2, and figure 2). Future studies

will explore variations in sample size, loading size and various

model (multi-factor).

Insert Table 3 about here

Estimation Procedures

Estimations will be represented by the general family of fit
functions for analysis of covariance structures, as proposed by
Brownae (1984). The most familiar estimation procedure currently

usad is the NTGLS procedure. It's fitting function is:

Fog = (s -0 W

( s -0 )I (10)
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where (s) and (o) refer to (y) based on a Pearsonian

correlation/covariance, with a weight matrix W = 2 ® £ or S\Q s,

where € = A & A' + 68, and ¢ = Veclzl]l] (Joreskog & Goldberger,
1972).

The second estimator is Browne's (1982) asymptotically

distribution free (ADF) generalized least-squares estimator. The

fitting function for this estimator is:
FADF = (s-—-0¢)'H (s - 0), (11)

where:

Sijk1 ~ S135k1-

with sij and Sk biased sample covariances, and Sijkl is the
fourth order multivariate cumulant (Kendall & Stuart, 1977).

The third estimator to be used is Muthén's (1985; 1987a)
latent TOBIT estimator. It has the same fitting function as the
NTGLS with the exception that instead of (y) referring to a
sample based Pearsonian correlation/covariance, (y*) refers to a
latent TOBIT correlation/covariance, based on the underlying
assumption of individual univariate normality. The TOBIT fitting

function is:

( S - O )I (12)
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where s* and o* refer to y* TOBIT based
correlation/covariances, with a weight matrix of z* ® z* or S* ®
s™ » where £ = Aé A + 8., and o = Vec[Z] (Muthén, 1985;
Muthén & Kaplan, 1985). Muthén'’s (1985) TOBIT approach is a two-
stage estimation of s*, where the initial stage is the univariate
estimation of u and 02 based on a normal distribution for
censored variables (Gupta, 1952). The second stage estimates the
covariances by maximum likelihood method from the bivariate
information by holding u and 02 constant at the univariate
estimated levels (Muthén, 1985). This approach may be visually
conceptualized in figure 3, where a latent correlation is

estimated for two censored variables.

Insert Figure 3 about here

Results

The results of Monte Carlo study number 1 support previous
findings (Anderson & Gerbing, 1984; Boomsma, 1985) that
nonconvergence rate is inversely related to sample size at 0%

censoring. Figure 4a and 4b show the frequency of nonconvergence

17
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for the NTGLS estimates for the single factor model over two
levels model reliability (loading sizes), four levels of sample

size and four levels of variable censoring.

Insert Figures 4a and 4b about here

The asymmetry provided in the higher censoring conditions seems
to enhance nonconvergence, but more in the larger loading models
than the smaller, with the exception of the ‘=25 condition.
Figures Sa and 5b indicate that variable censoring has a dramatic
effect on the proportion of congeneric model rejections, %‘though
one must be cautioned about the interpretation of the proportion

of model rejections for small samples size (e.g., N=25 and N=850).

Insert Figures 5a and 5b about here

For convenience, the amount of bias will be studied in only
two of the four A estimates (hl a2 noncensored continuous
variable, and R4 a censored continuous variablg). Figures 6a and
-6b present the percent of bias in these two estimates over the

studied conditions. In the censored variable (A4), the percent of
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bias seems to be a monotonic function of the amount of variable
censor, regardless of the sample size, with slightly stronger
bias occurring in the highly reliable model (large loading size).
If one disregards the L2 test on the basis of smaller sample
sizes and calculates individual rater reliability, since

individual reliability may be reduced %o AZ

i in this example, we
may interpret Figure 6a as the amount of bias in the estimate of
reliability for rater four.

The amount of bias in the noncensored continuous variable
(AI) may be considered trivial with a slight increase in model
censoring. The bias in the higher reliability medel (Ai = ,9)
tended to be negative, whereas the lower reliability model (Ai =

.6) tended to fluctuate more (Figure 6b).

Insert Figures 6a and 6b about here

A much more dramatic occurrence of negative bias may be seen
in figure 7a, the percent of bias in the estimate of the error
variance (88) in the censored variahle. Here one may see a strong
negative bias even in the low censoring conditions. Sample size,
in this example, seems to have little effect on bias once
censoring has occurred. Model loading size produced a slight
difference in bias, with the less reliable model providing

stronger bias. Figure 7b show the percent of bias in the estimate

of error variance in the non-censored variable. As seen in figure
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7a, the less reliable model (smaller loadings) seems more

susceptible to bias in the estimate of error variance.

Insert Figures 7a and 7b about here

Using the results from study number one, a second Monte
Carlo study was designed using a single sample size (N=100) on
the single congeneric model (see Figure 2). Figure 8 provides the
proportion of model rejections for the three estimation
procedures (NTGLS, ADF and TOBIT) across the four levels of

variable censoring.

Insert Figure 8 about here

The ADF procedure was initially incorporated to deal with
tiie non-normality of the censored models, and the TOBIT procedure
was incorporated to deal with both non-normality and the
attenuation in the correlation estimates. All three procedures
similarly reject few congeneric models at zero censoring, but as
one increases censoring the proportion of rejectiun increases in

both NTGLS and ADF. NTGLS procedures in this example are not at

all robust at the 50% censoring level, with the ALF procedure
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"also providing poor results. This may also be seen in figures 9a

and 9b.

Insert Figures 9a and 9b about here

Figure 9a shows the percent of bias occurring in the A4
loading estimate (one of the censored conditions). Again the
percent of bias is monotonically related to the amount of
censoring in both NTGLS and ADF estimation procedures. The TOBIT
estimates on the other hand, produced very 1little bias. The
percer* of bias occurring for Al (noncensored condition) was
negligible for the TOBIT and NTGLS estimates, but resulted in
larger negative bias with the use of the ADF procedure {(Figure
9b).

The percent of bias in the estimate of the error variance
also resulted in a strong positive monotonic relationship with
the level of censoring for both NTGLS and ADF procedures. TOBIT
estimates were consistently positively biased, but at a
relatively low level (figure 1l0a). Figure 10b shows the percent
of bias in the estimate of the error variance for the non-

censored condition. The most striking result in this figure is

the consistent positive bias produced by the TOBIT estimates.

Insert Figures 10a and 10b about here
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Discussion

Monte Carlo study nuzpe: one demonstraved very well the lack
of robustness in the NTGLS estimation procedure for retrieving
correct A parameter estimates, estimated error variances ee's,
and model £it indices (likeliihocod ratios (Lz)) at 25% or more
censoring. One must also be impressed with the general lack of
model convergence with a small sample size (%=28) for such a well
defined model. This point in itself may prove to be the limiting
factor against the use of congeneric modeling techniques in
interrater reliability studies. While not reported in this paper,
concern for impruper solutions (e.g.. negative 6e estimates) have :
also been shown to be related to small sample size, which would
cause difficulty in estimating reliability.

One may conclude from the first Monte Carlo study, that the
use of Jéreskog's (1970) congeneric modeling approach to
v% interrater reliability estimation using HNTGLS methods must be
conducted very cautiousiy. While superior in many ways to> the
ANOVA approaches, the congeneric model is very susceptible to
even mild deviations from normality (e.g., censored variables)
and requires a moderately large sampling (at least N=100) for
; appropriate estimation. If one is not willing to accept these

limitations, then one will certainly have to acc & limitations

in the reljubility estimates.
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Monte Carlo study number two demonstrated that dealing with
non-normality alone (e.g., ADF procedure) is not enough for
providing accurate reliability estimates in censored variable
models. One must 7lso be concerned with the attenuation in the
correlations. This study demonstrated the superiority of the
TOBIT estimates in dealing with these two conditions. If one can
assume an underlying normality position, then latent correlation
based estimates of reliability may prove to be the savior of the
congeneric modeling approach to interrater reliability, though
sample siée ix still a limiting factor. While the latent

correlation based estimates seem attractive, further Monte Carlo

studies need to be conducted before they can be fully accepted.
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Table 1

Monte Carlo Study Design Number 1

Estimation Number of Loading Sample Percent1 Number of
procedure variables sizes sizes of censor replications

NTGLS 4 A=.9 25 0% 100
NTGLS 4 A=.9 50 0% 100
NTGLS 4 A=.9 100 0% 100
NTGLS 4 A=.9 400 0% 100
NTGLS 4 A= .6 25 0% 100
NTGLS 4 A= .6 50 0% 100
NTGLS 4 A= .6 100 0% 100
NTGLS 4 A= .6 400 u% 100
NTGLS 4 A=.9 25 25% 1609
NTGLS 4 A=.9 50 25% 100
NTGLS 4 A=.9 100 25% 100
NTGLS 4 A=.9 400 25% 100
NTGLS 4 A= .6 25 25% 100
NTGLS 4 A= .6 50 25% 100
NTGLS 4 A= .6 100 25% 100
NTGLS 4 A= .6 400 25% 100
NIGLS 4 A= .9 25 50% 100
NIGLS 4 A=.9 50 50% 100
NTGLS 4 A=.9 100 50% 100
NTGLS 4 A=.9 400 50% 100
NTGLS 4 A= .6 25 50% 100
NTGLS 4 A= .6 5C 50% 100
NTGLS 4 A= .6 100 50% 100
NTGLS 4 A= .6 400 50% 100
NTGLS 4 A=.9 25 75% 100
NTGLS 4 A=.9 50 75% 100
NTGLS 4 A=.9 100 75% 100
NTGLS 4 A=.9 400 75% 100
NTGLS 4 A= .6 25 75% 100
NTGLS 4 A= .6 50 75% 100
NTGLS 4 A= .6 100 75% 100
NTGLS 4 A= .6 400 75% 100

Two of the four A's remained continuous (0% censor) throughout
the study for internal comparison.
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Table 2

Monte Carlo Study Design Number 2

Estimation Number of Loading Sample Percent1 Number of

procedure variables sizes sizes of censor replications
NTGLS 4 A=.9 100 0% 100
ADF 4 A= .9 100 0% 100
TOBIT 4 A=.9 100 0% 100
NTGLS 4 A=.9 100 25% 100
ADF 4 A=.9 100 25% 100
TOBIT 4 A= .9 100 25% 100
NTGLS 4 A=.9 100 50% 100
ADF 4 A=.9 100 50% 100
TOBIT 4 A =.9 100 50% 100
NTGLS 4 A=.9 100 75% 100
ADF 4 A=.9 100 75% 100
TOBIT 4 A=.9 100 75% 100

i

Two of the four A's remained continuous (0% censor) throughout
the study for internal comparison.
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Table

”~

9

Model Population Values and Corresponding Standard Errors

Standard Errors

Parameter Value N=25 N=50 N=100 N=400
Large Loading
2] 2] 2] 2] .190 .074 .052 .037 .018
€1 82 B3 &
Moderate Loading
Rl Az Aa h4 .600 .232 .163 .114 .057
2] 2] ) 2] .640 . 250 .178 .123 .061
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Figure 1

1
Correlation attentuation due to variable censoring"
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Figure 2

Single Factor Congeneric Model
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Figure 3

Concept of a latent correiation
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FIGURE 4a
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FIGURE 4b
FREGUENCY CF NCNCCONVERGENCE
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FIGURE 5a

FRUPCRTICN OF CONGENERIC MCODEL REJECTICN
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FIGURE &b
PRCPCRTICN OF CONQGENERIC MODEL REJECTICN
MCDERATE REL.ARILITY MCDEL Lamads = .60
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FIGURE 6a
PERCENT CF BIAS IN LAMBDA (4,1) ESTIMATE
HIGH AND MCDERATE RELIABILITY MCDELS
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FIGURE 6b
PERCENT OF BIAS IN LAMGDA (4,1) ESTIMATE
HIGH AND MCDERATE RELIABILITY MCDELS
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FIGURE 7a
PERCENT OF BIAS IN THETA-EPSILCN (4,1)
RIeH AND MCDERATE RELIABILITY MCRELS
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FIGURE 7b
PERCENT CF BIAS IN THETA-EPSLCN (1,1)
HICH AND MCDERATE RELIABILITY MCDELS
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FIGURE 8
PRCPCRTICN CF MCDEL REJECTICNS
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FIGURE 9a

PERCENT OF BIAS FOR LAMBDA (4,1)
BAMPLE 3IZE » 100 CVER 100 REPLICATICNSG

This may also be Interpreted as
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estimate for thia rater,
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FIGURE &b
PERCENT CF BIAS FCR LANSEDA (1,1)
2AMPLE 2IZE « 100 OVER 100 REPLICATICNS
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Thia may also be Interpreted as
the peraent of blas In the rellabliity
estimate for this rater.
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FIGURE 10a

PERCENT OF BIAS IN THETA-EPSLCN (4,1)
ACROSS THE THREE ESTIMATION PRCCEDURES
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FIGURE 10b
PERCENT CF BIAS IN THETA-EPEILON (4,1)
FCROSS THE THREE ESTIMATICN PRCCEDURES
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